fire.api.model package

Module contents

SQLAlchemy models for the application

class fire.api.model.BetterBehavedEnum(enumtype: Enum, *args, **kwargs)

Bases: TypeDecorator

SQLAlchemy ignorer som standard værdierne i tilknyttet labels i en Enum. Denne klasse sørger for at de korrekte værdier indsættes, sådan at

Boolean.FALSE oversættes til 'false' og ikke 'FALSE'.

process_bind_param(value, dialect)

Receive a bound parameter value to be converted.

Custom subclasses of _types.TypeDecorator should override this method to provide custom behaviors for incoming data values. This method is called at statement execution time and is passed the literal Python data value which is to be associated with a bound parameter in the statement.

The operation could be anything desired to perform custom behavior, such as transforming or serializing data. This could also be used as a hook for validating logic.

Parameters:
  • value -- Data to operate upon, of any type expected by this method in the subclass. Can be None.

  • dialect -- the Dialect in use.

See also

types_typedecorator

_types.TypeDecorator.process_result_value()

process_result_value(value, dialect)

Receive a result-row column value to be converted.

Custom subclasses of _types.TypeDecorator should override this method to provide custom behaviors for data values being received in result rows coming from the database. This method is called at result fetching time and is passed the literal Python data value that's extracted from a database result row.

The operation could be anything desired to perform custom behavior, such as transforming or deserializing data.

Parameters:
  • value -- Data to operate upon, of any type expected by this method in the subclass. Can be None.

  • dialect -- the Dialect in use.

See also

types_typedecorator

_types.TypeDecorator.process_bind_param()

class fire.api.model.Boolean(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FALSE = 'false'
TRUE = 'true'
class fire.api.model.IntEnum(enumtype: Enum, *args, **kwargs)

Bases: BetterBehavedEnum

Add an integer enum class

impl

alias of Integer

class fire.api.model.RegisteringFraObjekt(**kwargs)

Bases: Base

objektid = Column(None, Integer(), table=None, primary_key=True, nullable=False)
property registreringfra
class fire.api.model.RegisteringTidObjekt(**kwargs)

Bases: Base

objektid = Column(None, Integer(), table=None, primary_key=True, nullable=False)
property registreringfra
property registreringtil
class fire.api.model.ReprBase

Bases: object

Udvid SQLAlchemys Base klasse.

Giver pænere repr() output. Modificeret fra StackOverflow: https://stackoverflow.com/a/54034962

class fire.api.model.StringEnum(enumtype: Enum, *args, **kwargs)

Bases: BetterBehavedEnum

Add an integer enum class

impl

alias of String

Submodules

class fire.api.model.columntypes.Curve(dimension=None, srid=-1)

Bases: Geometry

cache_ok = True

Indicate if statements using this ExternalType are "safe to cache".

The default value None will emit a warning and then not allow caching of a statement which includes this type. Set to False to disable statements using this type from being cached at all without a warning. When set to True, the object's class and selected elements from its state will be used as part of the cache key. For example, using a TypeDecorator:

class MyType(TypeDecorator):
    impl = String

    cache_ok = True

    def __init__(self, choices):
        self.choices = tuple(choices)
        self.internal_only = True

The cache key for the above type would be equivalent to:

>>> MyType(["a", "b", "c"])._static_cache_key
(<class '__main__.MyType'>, ('choices', ('a', 'b', 'c')))

The caching scheme will extract attributes from the type that correspond to the names of parameters in the __init__() method. Above, the "choices" attribute becomes part of the cache key but "internal_only" does not, because there is no parameter named "internal_only".

The requirements for cacheable elements is that they are hashable and also that they indicate the same SQL rendered for expressions using this type every time for a given cache value.

To accommodate for datatypes that refer to unhashable structures such as dictionaries, sets and lists, these objects can be made "cacheable" by assigning hashable structures to the attributes whose names correspond with the names of the arguments. For example, a datatype which accepts a dictionary of lookup values may publish this as a sorted series of tuples. Given a previously un-cacheable type as:

class LookupType(UserDefinedType):
    '''a custom type that accepts a dictionary as a parameter.

    this is the non-cacheable version, as "self.lookup" is not
    hashable.

    '''

    def __init__(self, lookup):
        self.lookup = lookup

    def get_col_spec(self, **kw):
        return "VARCHAR(255)"

    def bind_processor(self, dialect):
        # ...  works with "self.lookup" ...

Where "lookup" is a dictionary. The type will not be able to generate a cache key:

>>> type_ = LookupType({"a": 10, "b": 20})
>>> type_._static_cache_key
<stdin>:1: SAWarning: UserDefinedType LookupType({'a': 10, 'b': 20}) will not
produce a cache key because the ``cache_ok`` flag is not set to True.
Set this flag to True if this type object's state is safe to use
in a cache key, or False to disable this warning.
symbol('no_cache')

If we did set up such a cache key, it wouldn't be usable. We would get a tuple structure that contains a dictionary inside of it, which cannot itself be used as a key in a "cache dictionary" such as SQLAlchemy's statement cache, since Python dictionaries aren't hashable:

>>> # set cache_ok = True
>>> type_.cache_ok = True

>>> # this is the cache key it would generate
>>> key = type_._static_cache_key
>>> key
(<class '__main__.LookupType'>, ('lookup', {'a': 10, 'b': 20}))

>>> # however this key is not hashable, will fail when used with
>>> # SQLAlchemy statement cache
>>> some_cache = {key: "some sql value"}
Traceback (most recent call last): File "<stdin>", line 1,
in <module> TypeError: unhashable type: 'dict'

The type may be made cacheable by assigning a sorted tuple of tuples to the ".lookup" attribute:

class LookupType(UserDefinedType):
    '''a custom type that accepts a dictionary as a parameter.

    The dictionary is stored both as itself in a private variable,
    and published in a public variable as a sorted tuple of tuples,
    which is hashable and will also return the same value for any
    two equivalent dictionaries.  Note it assumes the keys and
    values of the dictionary are themselves hashable.

    '''

    cache_ok = True

    def __init__(self, lookup):
        self._lookup = lookup

        # assume keys/values of "lookup" are hashable; otherwise
        # they would also need to be converted in some way here
        self.lookup = tuple(
            (key, lookup[key]) for key in sorted(lookup)
        )

    def get_col_spec(self, **kw):
        return "VARCHAR(255)"

    def bind_processor(self, dialect):
        # ...  works with "self._lookup" ...

Where above, the cache key for LookupType({"a": 10, "b": 20}) will be:

>>> LookupType({"a": 10, "b": 20})._static_cache_key
(<class '__main__.LookupType'>, ('lookup', (('a', 10), ('b', 20))))

Added in version 1.4.14: - added the cache_ok flag to allow some configurability of caching for TypeDecorator classes.

Added in version 1.4.28: - added the ExternalType mixin which generalizes the cache_ok flag to both the TypeDecorator and UserDefinedType classes.

See also

sql_caching

name = 'CURVE'
class fire.api.model.columntypes.Geometry(dimension=None, srid=-1)

Bases: UserDefinedType

Oracle geometri Column type.

adapt(impltype)

Produce an "adapted" form of this type, given an "impl" class to work with.

This method is used internally to associate generic types with "implementation" types that are specific to a particular dialect.

bind_expression(bindvalue)
bind_processor(dialect)

Return a conversion function for processing bind values.

Returns a callable which will receive a bind parameter value as the sole positional argument and will return a value to send to the DB-API.

If processing is not necessary, the method should return None.

Note

This method is only called relative to a dialect specific type object, which is often private to a dialect in use and is not the same type object as the public facing one, which means it's not feasible to subclass a types.TypeEngine class in order to provide an alternate _types.TypeEngine.bind_processor() method, unless subclassing the _types.UserDefinedType class explicitly.

To provide alternate behavior for _types.TypeEngine.bind_processor(), implement a _types.TypeDecorator class and provide an implementation of _types.TypeDecorator.process_bind_param().

See also

types_typedecorator

Parameters:

dialect -- Dialect instance in use.

cache_ok = True

Indicate if statements using this ExternalType are "safe to cache".

The default value None will emit a warning and then not allow caching of a statement which includes this type. Set to False to disable statements using this type from being cached at all without a warning. When set to True, the object's class and selected elements from its state will be used as part of the cache key. For example, using a TypeDecorator:

class MyType(TypeDecorator):
    impl = String

    cache_ok = True

    def __init__(self, choices):
        self.choices = tuple(choices)
        self.internal_only = True

The cache key for the above type would be equivalent to:

>>> MyType(["a", "b", "c"])._static_cache_key
(<class '__main__.MyType'>, ('choices', ('a', 'b', 'c')))

The caching scheme will extract attributes from the type that correspond to the names of parameters in the __init__() method. Above, the "choices" attribute becomes part of the cache key but "internal_only" does not, because there is no parameter named "internal_only".

The requirements for cacheable elements is that they are hashable and also that they indicate the same SQL rendered for expressions using this type every time for a given cache value.

To accommodate for datatypes that refer to unhashable structures such as dictionaries, sets and lists, these objects can be made "cacheable" by assigning hashable structures to the attributes whose names correspond with the names of the arguments. For example, a datatype which accepts a dictionary of lookup values may publish this as a sorted series of tuples. Given a previously un-cacheable type as:

class LookupType(UserDefinedType):
    '''a custom type that accepts a dictionary as a parameter.

    this is the non-cacheable version, as "self.lookup" is not
    hashable.

    '''

    def __init__(self, lookup):
        self.lookup = lookup

    def get_col_spec(self, **kw):
        return "VARCHAR(255)"

    def bind_processor(self, dialect):
        # ...  works with "self.lookup" ...

Where "lookup" is a dictionary. The type will not be able to generate a cache key:

>>> type_ = LookupType({"a": 10, "b": 20})
>>> type_._static_cache_key
<stdin>:1: SAWarning: UserDefinedType LookupType({'a': 10, 'b': 20}) will not
produce a cache key because the ``cache_ok`` flag is not set to True.
Set this flag to True if this type object's state is safe to use
in a cache key, or False to disable this warning.
symbol('no_cache')

If we did set up such a cache key, it wouldn't be usable. We would get a tuple structure that contains a dictionary inside of it, which cannot itself be used as a key in a "cache dictionary" such as SQLAlchemy's statement cache, since Python dictionaries aren't hashable:

>>> # set cache_ok = True
>>> type_.cache_ok = True

>>> # this is the cache key it would generate
>>> key = type_._static_cache_key
>>> key
(<class '__main__.LookupType'>, ('lookup', {'a': 10, 'b': 20}))

>>> # however this key is not hashable, will fail when used with
>>> # SQLAlchemy statement cache
>>> some_cache = {key: "some sql value"}
Traceback (most recent call last): File "<stdin>", line 1,
in <module> TypeError: unhashable type: 'dict'

The type may be made cacheable by assigning a sorted tuple of tuples to the ".lookup" attribute:

class LookupType(UserDefinedType):
    '''a custom type that accepts a dictionary as a parameter.

    The dictionary is stored both as itself in a private variable,
    and published in a public variable as a sorted tuple of tuples,
    which is hashable and will also return the same value for any
    two equivalent dictionaries.  Note it assumes the keys and
    values of the dictionary are themselves hashable.

    '''

    cache_ok = True

    def __init__(self, lookup):
        self._lookup = lookup

        # assume keys/values of "lookup" are hashable; otherwise
        # they would also need to be converted in some way here
        self.lookup = tuple(
            (key, lookup[key]) for key in sorted(lookup)
        )

    def get_col_spec(self, **kw):
        return "VARCHAR(255)"

    def bind_processor(self, dialect):
        # ...  works with "self._lookup" ...

Where above, the cache key for LookupType({"a": 10, "b": 20}) will be:

>>> LookupType({"a": 10, "b": 20})._static_cache_key
(<class '__main__.LookupType'>, ('lookup', (('a', 10), ('b', 20))))

Added in version 1.4.14: - added the cache_ok flag to allow some configurability of caching for TypeDecorator classes.

Added in version 1.4.28: - added the ExternalType mixin which generalizes the cache_ok flag to both the TypeDecorator and UserDefinedType classes.

See also

sql_caching

column_expression(col)
get_col_spec()
name = 'GEOMETRY'
result_processor(dialect, coltype)

Return a conversion function for processing result row values.

Returns a callable which will receive a result row column value as the sole positional argument and will return a value to return to the user.

If processing is not necessary, the method should return None.

Note

This method is only called relative to a dialect specific type object, which is often private to a dialect in use and is not the same type object as the public facing one, which means it's not feasible to subclass a types.TypeEngine class in order to provide an alternate _types.TypeEngine.result_processor() method, unless subclassing the _types.UserDefinedType class explicitly.

To provide alternate behavior for _types.TypeEngine.result_processor(), implement a _types.TypeDecorator class and provide an implementation of _types.TypeDecorator.process_result_value().

See also

types_typedecorator

Parameters:
  • dialect -- Dialect instance in use.

  • coltype -- DBAPI coltype argument received in cursor.description.

class fire.api.model.columntypes.LineString(dimension=None, srid=-1)

Bases: Curve

cache_ok = True

Indicate if statements using this ExternalType are "safe to cache".

The default value None will emit a warning and then not allow caching of a statement which includes this type. Set to False to disable statements using this type from being cached at all without a warning. When set to True, the object's class and selected elements from its state will be used as part of the cache key. For example, using a TypeDecorator:

class MyType(TypeDecorator):
    impl = String

    cache_ok = True

    def __init__(self, choices):
        self.choices = tuple(choices)
        self.internal_only = True

The cache key for the above type would be equivalent to:

>>> MyType(["a", "b", "c"])._static_cache_key
(<class '__main__.MyType'>, ('choices', ('a', 'b', 'c')))

The caching scheme will extract attributes from the type that correspond to the names of parameters in the __init__() method. Above, the "choices" attribute becomes part of the cache key but "internal_only" does not, because there is no parameter named "internal_only".

The requirements for cacheable elements is that they are hashable and also that they indicate the same SQL rendered for expressions using this type every time for a given cache value.

To accommodate for datatypes that refer to unhashable structures such as dictionaries, sets and lists, these objects can be made "cacheable" by assigning hashable structures to the attributes whose names correspond with the names of the arguments. For example, a datatype which accepts a dictionary of lookup values may publish this as a sorted series of tuples. Given a previously un-cacheable type as:

class LookupType(UserDefinedType):
    '''a custom type that accepts a dictionary as a parameter.

    this is the non-cacheable version, as "self.lookup" is not
    hashable.

    '''

    def __init__(self, lookup):
        self.lookup = lookup

    def get_col_spec(self, **kw):
        return "VARCHAR(255)"

    def bind_processor(self, dialect):
        # ...  works with "self.lookup" ...

Where "lookup" is a dictionary. The type will not be able to generate a cache key:

>>> type_ = LookupType({"a": 10, "b": 20})
>>> type_._static_cache_key
<stdin>:1: SAWarning: UserDefinedType LookupType({'a': 10, 'b': 20}) will not
produce a cache key because the ``cache_ok`` flag is not set to True.
Set this flag to True if this type object's state is safe to use
in a cache key, or False to disable this warning.
symbol('no_cache')

If we did set up such a cache key, it wouldn't be usable. We would get a tuple structure that contains a dictionary inside of it, which cannot itself be used as a key in a "cache dictionary" such as SQLAlchemy's statement cache, since Python dictionaries aren't hashable:

>>> # set cache_ok = True
>>> type_.cache_ok = True

>>> # this is the cache key it would generate
>>> key = type_._static_cache_key
>>> key
(<class '__main__.LookupType'>, ('lookup', {'a': 10, 'b': 20}))

>>> # however this key is not hashable, will fail when used with
>>> # SQLAlchemy statement cache
>>> some_cache = {key: "some sql value"}
Traceback (most recent call last): File "<stdin>", line 1,
in <module> TypeError: unhashable type: 'dict'

The type may be made cacheable by assigning a sorted tuple of tuples to the ".lookup" attribute:

class LookupType(UserDefinedType):
    '''a custom type that accepts a dictionary as a parameter.

    The dictionary is stored both as itself in a private variable,
    and published in a public variable as a sorted tuple of tuples,
    which is hashable and will also return the same value for any
    two equivalent dictionaries.  Note it assumes the keys and
    values of the dictionary are themselves hashable.

    '''

    cache_ok = True

    def __init__(self, lookup):
        self._lookup = lookup

        # assume keys/values of "lookup" are hashable; otherwise
        # they would also need to be converted in some way here
        self.lookup = tuple(
            (key, lookup[key]) for key in sorted(lookup)
        )

    def get_col_spec(self, **kw):
        return "VARCHAR(255)"

    def bind_processor(self, dialect):
        # ...  works with "self._lookup" ...

Where above, the cache key for LookupType({"a": 10, "b": 20}) will be:

>>> LookupType({"a": 10, "b": 20})._static_cache_key
(<class '__main__.LookupType'>, ('lookup', (('a', 10), ('b', 20))))

Added in version 1.4.14: - added the cache_ok flag to allow some configurability of caching for TypeDecorator classes.

Added in version 1.4.28: - added the ExternalType mixin which generalizes the cache_ok flag to both the TypeDecorator and UserDefinedType classes.

See also

sql_caching

name = 'LINESTRING'
class fire.api.model.columntypes.Point(dimension=None, srid=-1)

Bases: Geometry

cache_ok = True

Indicate if statements using this ExternalType are "safe to cache".

The default value None will emit a warning and then not allow caching of a statement which includes this type. Set to False to disable statements using this type from being cached at all without a warning. When set to True, the object's class and selected elements from its state will be used as part of the cache key. For example, using a TypeDecorator:

class MyType(TypeDecorator):
    impl = String

    cache_ok = True

    def __init__(self, choices):
        self.choices = tuple(choices)
        self.internal_only = True

The cache key for the above type would be equivalent to:

>>> MyType(["a", "b", "c"])._static_cache_key
(<class '__main__.MyType'>, ('choices', ('a', 'b', 'c')))

The caching scheme will extract attributes from the type that correspond to the names of parameters in the __init__() method. Above, the "choices" attribute becomes part of the cache key but "internal_only" does not, because there is no parameter named "internal_only".

The requirements for cacheable elements is that they are hashable and also that they indicate the same SQL rendered for expressions using this type every time for a given cache value.

To accommodate for datatypes that refer to unhashable structures such as dictionaries, sets and lists, these objects can be made "cacheable" by assigning hashable structures to the attributes whose names correspond with the names of the arguments. For example, a datatype which accepts a dictionary of lookup values may publish this as a sorted series of tuples. Given a previously un-cacheable type as:

class LookupType(UserDefinedType):
    '''a custom type that accepts a dictionary as a parameter.

    this is the non-cacheable version, as "self.lookup" is not
    hashable.

    '''

    def __init__(self, lookup):
        self.lookup = lookup

    def get_col_spec(self, **kw):
        return "VARCHAR(255)"

    def bind_processor(self, dialect):
        # ...  works with "self.lookup" ...

Where "lookup" is a dictionary. The type will not be able to generate a cache key:

>>> type_ = LookupType({"a": 10, "b": 20})
>>> type_._static_cache_key
<stdin>:1: SAWarning: UserDefinedType LookupType({'a': 10, 'b': 20}) will not
produce a cache key because the ``cache_ok`` flag is not set to True.
Set this flag to True if this type object's state is safe to use
in a cache key, or False to disable this warning.
symbol('no_cache')

If we did set up such a cache key, it wouldn't be usable. We would get a tuple structure that contains a dictionary inside of it, which cannot itself be used as a key in a "cache dictionary" such as SQLAlchemy's statement cache, since Python dictionaries aren't hashable:

>>> # set cache_ok = True
>>> type_.cache_ok = True

>>> # this is the cache key it would generate
>>> key = type_._static_cache_key
>>> key
(<class '__main__.LookupType'>, ('lookup', {'a': 10, 'b': 20}))

>>> # however this key is not hashable, will fail when used with
>>> # SQLAlchemy statement cache
>>> some_cache = {key: "some sql value"}
Traceback (most recent call last): File "<stdin>", line 1,
in <module> TypeError: unhashable type: 'dict'

The type may be made cacheable by assigning a sorted tuple of tuples to the ".lookup" attribute:

class LookupType(UserDefinedType):
    '''a custom type that accepts a dictionary as a parameter.

    The dictionary is stored both as itself in a private variable,
    and published in a public variable as a sorted tuple of tuples,
    which is hashable and will also return the same value for any
    two equivalent dictionaries.  Note it assumes the keys and
    values of the dictionary are themselves hashable.

    '''

    cache_ok = True

    def __init__(self, lookup):
        self._lookup = lookup

        # assume keys/values of "lookup" are hashable; otherwise
        # they would also need to be converted in some way here
        self.lookup = tuple(
            (key, lookup[key]) for key in sorted(lookup)
        )

    def get_col_spec(self, **kw):
        return "VARCHAR(255)"

    def bind_processor(self, dialect):
        # ...  works with "self._lookup" ...

Where above, the cache key for LookupType({"a": 10, "b": 20}) will be:

>>> LookupType({"a": 10, "b": 20})._static_cache_key
(<class '__main__.LookupType'>, ('lookup', (('a', 10), ('b', 20))))

Added in version 1.4.14: - added the cache_ok flag to allow some configurability of caching for TypeDecorator classes.

Added in version 1.4.28: - added the ExternalType mixin which generalizes the cache_ok flag to both the TypeDecorator and UserDefinedType classes.

See also

sql_caching

name = 'POINT'
class fire.api.model.geometry.Bbox(bounds, srid=4326)

Bases: Geometry

class fire.api.model.geometry.Geometry(geometry, srid=4326)

Bases: Function

Repræsenterer en geometri værdi.

inherit_cache = True

Indicate if this HasCacheKey instance should make use of the cache key generation scheme used by its immediate superclass.

The attribute defaults to None, which indicates that a construct has not yet taken into account whether or not its appropriate for it to participate in caching; this is functionally equivalent to setting the value to False, except that a warning is also emitted.

This flag can be set to True on a particular class, if the SQL that corresponds to the object does not change based on attributes which are local to this class, and not its superclass.

See also

compilerext_caching - General guideslines for setting the HasCacheKey.inherit_cache attribute for third-party or user defined SQL constructs.

property wkt
class fire.api.model.geometry.Point(p, srid=4326)

Bases: Geometry

inherit_cache = True

Indicate if this HasCacheKey instance should make use of the cache key generation scheme used by its immediate superclass.

The attribute defaults to None, which indicates that a construct has not yet taken into account whether or not its appropriate for it to participate in caching; this is functionally equivalent to setting the value to False, except that a warning is also emitted.

This flag can be set to True on a particular class, if the SQL that corresponds to the object does not change based on attributes which are local to this class, and not its superclass.

See also

compilerext_caching - General guideslines for setting the HasCacheKey.inherit_cache attribute for third-party or user defined SQL constructs.

class fire.api.model.punkttyper.Artskode(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

Uddybende beskrivelser fra REFGEO:

artskode = 1 control point in fundamental network, first order. artskode = 2 control point in superior plane network. artskode = 2 control point in superior height network. artskode = 3 control point in network of high quality. artskode = 4 control point in network of lower or unknown quality. artskode = 5 coordinate computed on just a few measurements. artskode = 6 coordinate transformed from local or an not valid coordinate system. artskode = 7 coordinate computed on an not valid coordinate system, or system of unknown origin. artskode = 8 coordinate computed on few measurements, and on an not valid coordinate system. artskode = 9 location coordinate or location height.

BESTEMT_FRA_FAA_OBSERVATIONER = 5
FAA_OBS_OG_UKENDT_KOORDINATSYSTEM = 8
FUNDAMENTAL_PUNKT = 1
LOKATIONSKOORDINAT = 9
NETVAERK_AF_GOD_KVALITET = 2
NETVAERK_AF_HOEJ_KVALITET = 3
NETVAERK_AF_LAV_KVALITET = 4
NULL = None
TRANSFORMERET = 6
UKENDT_KOORDINATSYSTEM = 7
class fire.api.model.punkttyper.Beregning(**kwargs)

Bases: FikspunktregisterObjekt

koordinater
objektid
observationer
sagsevent
sagseventfraid
sagseventtilid
slettet
class fire.api.model.punkttyper.Boolean(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FALSE = 'false'
TRUE = 'true'
class fire.api.model.punkttyper.FikspunktregisterObjekt(**kwargs)

Bases: RegisteringTidObjekt

class fire.api.model.punkttyper.FikspunktsType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GI = 1
HJÆLPEPUNKT = 5
HØJDE = 3
JESSEN = 4
MV = 2
VANDSTANDSBRÆT = 6
class fire.api.model.punkttyper.GeometriObjekt(**kwargs)

Bases: FikspunktregisterObjekt

geometri
property koordinater
objektid
punkt
punktid
sagsevent
sagseventfraid
sagseventtilid
slettet
class fire.api.model.punkttyper.Grafik(**kwargs)

Bases: FikspunktregisterObjekt

filnavn
classmethod fra_fil(punkt: Punkt, sti: Path)

Opret Grafik ud fra en billedfil.

grafik
mimetype
objektid
punkt
punktid
sagsevent
sagseventfraid
sagseventtilid
slettet
type
class fire.api.model.punkttyper.GrafikType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FOTO = 'foto'
SKITSE = 'skitse'
class fire.api.model.punkttyper.Ident(punktinfo: PunktInformation | str)

Bases: object

class IdentType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

DIVERSE = 7
EKSTERN = 6
GI = 1
GNSS = 2
JESSEN = 4
KORTUUID = 10
LANDSNR = 3
REFGEO = 8
STATION = 5
UKENDT = 9
class fire.api.model.punkttyper.Koordinat(**kwargs)

Bases: FikspunktregisterObjekt

artskode
property beregning

Returner beregning der ligger til grund for koordinaten.

beregninger
property fejlmeldt
objektid
property observationer

Returner alle observationer der direkte har bidraget til en koordinat.

punkt
punktid
sagsevent
sagseventfraid
sagseventtilid
slettet
srid
sridid
sx
sy
sz
t
tidsserier
transformeret
x
y
z
class fire.api.model.punkttyper.Punkt(*args, **kwargs)

Bases: FikspunktregisterObjekt

property geometri
geometriobjekter
property gnss_navn: str
grafikker
id
property ident: str

Udtræk det geodætisk mest læsbare ident.

I nævnte rækkefølge:
  • IDENT:GI

  • IDENT:GNSS,

  • IDENT:landsr

  • IDENT:jessen

  • IDENT:station

  • IDENT:ekstern

  • IDENT:diverse

  • IDENT:refgeo_id.

Hvis et punkt overhovedet ikke har noget ident returneres uuiden uforandret.

property identer: List[str]

Returner liste over alle identer der er tilknyttet Punktet

property jessennummer: str
koordinater
property landsnummer: str
objektid
observationer_fra
observationer_til
punktinformationer
punktsamlinger
sagsevent
sagseventfraid
sagseventtilid
slettet
property tabtgået: bool
tidsserier
class fire.api.model.punkttyper.PunktInformation(**kwargs)

Bases: FikspunktregisterObjekt

infotype
infotypeid
objektid
punkt
punktid
sagsevent
sagseventfraid
sagseventtilid
slettet
tal
tekst
class fire.api.model.punkttyper.PunktInformationType(**kwargs)

Bases: Base

anvendelse
beskrivelse
infotypeid
name
objektid
class fire.api.model.punkttyper.PunktInformationTypeAnvendelse(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

FLAG = 'FLAG'
TAL = 'TAL'
TEKST = 'TEKST'
class fire.api.model.punkttyper.PunktSamling(**kwargs)

Bases: FikspunktregisterObjekt

fjern_punkter(punkter: list[Punkt]) None

Fjern punkter fra punktsamlingen.

Ændrer punktsamlingens liste af punkter in-place. Hvis et eller flere punkter ikke findes i punktsamlingen i forvejen udsendes en ValueError.

formål
jessenkoordinat
jessenkoordinatid
property jessenkote: float

Referencekoten for tidsserier tilknyttet punktsamlingen.

Koten for en tilknyttet tidsserie fratrukket jessenkoten giver højden over jessenpunktet. Punktsamlinger som ikke har et jessenkoordinat, antages at have jessenkoten 0.

jessenpunkt
jessenpunktid
navn
objektid
punkter
sagsevent
sagseventfraid
sagseventtilid
slettet
tidsserier
tilføj_punkter(punkter: list[Punkt]) None

Føj punkter til punktsamlingen.

Ændrer punktsamlingens liste af punkter in-place. Hvis et eller flere punkter findes i punktsamlingen i forvejen udsendes en ValueError.

class fire.api.model.punkttyper.Srid(**kwargs)

Bases: Base

beskrivelse
kortnavn
name
objektid
sridid
x
y
z
class fire.api.model.sagstyper.EventType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

GRAFIK_INDSAT = 10
GRAFIK_NEDLAGT = 11
KOMMENTAR = 9
KOORDINAT_BEREGNET = 1
KOORDINAT_NEDLAGT = 2
OBSERVATION_INDSAT = 3
OBSERVATION_NEDLAGT = 4
PUNKTGRUPPE_MODIFICERET = 12
PUNKTGRUPPE_NEDLAGT = 13
PUNKTINFO_FJERNET = 6
PUNKTINFO_TILFOEJET = 5
PUNKT_NEDLAGT = 8
PUNKT_OPRETTET = 7
TIDSSERIE_MODIFICERET = 14
TIDSSERIE_NEDLAGT = 15
class fire.api.model.sagstyper.Sag(**kwargs)

Bases: RegisteringFraObjekt

property aktiv: bool
property behandler: str
property beskrivelse: str
id
property journalnummer: str
ny_sagsevent(beskrivelse: str, materialer: List[bytes] = [], htmler: List[str] = [], id: str = None, **kwargs) Sagsevent

Fabrik til oprettelse af nye sagsevents.

Oprettede sagsevents er altid tilknyttet sagen de blev skabt fra. Sagseventtypen bestemmes automatisk ud fra det tilknyttede indhold.

kwargs føres direkte videre til Sagsevent og skal altså være et gyldigt argument til Sagsevent. Fælgende muligheder er tilgængelige:

punkter geometriobjekter beregninger koordinater observationer punktinformationer grafikker punktsamlinger tidsserier punkter_slettede geometriobjekter_slettede beregninger_slettede koordinater_slettede observationer_slettede punktinformationer_slettede grafikker_slettede punktsamlinger_slettede tidsserier_slettede

objektid
sagsevents
sagsinfos
class fire.api.model.sagstyper.Sagsevent(**kwargs)

Bases: RegisteringFraObjekt

beregninger
beregninger_slettede
property beskrivelse: str
eventtype
geometriobjekter
geometriobjekter_slettede
grafikker
grafikker_slettede
id
koordinater
koordinater_slettede
objektid
observationer
observationer_slettede
punkter
punkter_slettede
punktinformationer
punktinformationer_slettede
punktsamlinger
punktsamlinger_slettede
sag
sagseventinfos
sagsid
tidsserier
tidsserier_slettede
class fire.api.model.sagstyper.SagseventInfo(**kwargs)

Bases: RegisteringTidObjekt

beskrivelse
htmler
materialer
objektid
sagsevent
sagseventid
class fire.api.model.sagstyper.SagseventInfoHtml(**kwargs)

Bases: Base

html
objektid
sagseventinfo
sagseventinfoobjektid
class fire.api.model.sagstyper.SagseventInfoMateriale(**kwargs)

Bases: Base

materiale
objektid
sagseventinfo
sagseventinfoobjektid
class fire.api.model.sagstyper.Sagsinfo(**kwargs)

Bases: RegisteringTidObjekt

aktiv
behandler
beskrivelse
journalnummer
objektid
sag
sagsid